H(t)=-16t^2+48t+4

Simple and best practice solution for H(t)=-16t^2+48t+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+48t+4 equation:



(H)=-16H^2+48H+4
We move all terms to the left:
(H)-(-16H^2+48H+4)=0
We get rid of parentheses
16H^2-48H+H-4=0
We add all the numbers together, and all the variables
16H^2-47H-4=0
a = 16; b = -47; c = -4;
Δ = b2-4ac
Δ = -472-4·16·(-4)
Δ = 2465
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-47)-\sqrt{2465}}{2*16}=\frac{47-\sqrt{2465}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-47)+\sqrt{2465}}{2*16}=\frac{47+\sqrt{2465}}{32} $

See similar equations:

| x+2^2=-9 | | 7c–3c=c+27 | | 142+38=180+20x-2 | | 4(x−3)=6 | | |5+2n|=9 | | 22x+3=21x+9= | | 3p+12=8p–23 | | 10y-8y-11=17.46 | | -12-4x-5=-7 | | 0.3y+0.6=0.2 | | 8w–5=7w+13 | | 8f=40 | | F(-10)=-3x-1 | | 3-3(x+2)=15 | | 4/x=0.3 | | k-3/4=-25/8 | | -4(9+x)=23 | | y/20-3=7 | | r=(1+ 11)(2) | | 12–5x=7x | | k+20=37 | | 4(12x-5)-2=8(x+11)+5 | | r=( 1 + 11)( 2 ) | | 10x/5=8 | | 3-x^2=4+9x | | F(x)=2x^2-10x-1 | | -15k=60 | | 2d-11=31 | | 5)-12x+60=48 | | 36^2^-^3x=216^2x+61 | | −9y−11=−47 | | 5x–2x+9=8x-5x+9 |

Equations solver categories